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Classes of experiments
Neyis ~o * flux * volume * time

¢ Accelerator

¢ Low-energy vTelescope
studies

¢ Requires good knowledge
of flux -

v absorption studies
¢ In the Earth ¥ V3N,
+ High-energy vTelescope

¢ ~ mostly flux independent,
but must know angular
distribution

& Other systematics
For both, v/vbar ratio matters

SK and F. Halzen, Phys. Today, May 2008. 2



The cross-section landscape

3
Deep Inelastic Scattering dominates %1:
for E, > 100 GeV 5 o
¢ Charged and neutral current Eros

Resonant reactions: vN-> vN*r/... £
+ Relative rates to different final states goz

are not well known > ot

¢ Much nuclear physics enters

Quasi-elastic: vN-> vN(*)

o(v) > o(vbar) due to valence quarks
+ Difference disappears as E-> «

Nuclear composition affects ¢

Diffractive reactions & Glashow
resonances appear at high energies

o
>

GeV)

Formaggio & Zeller, Rev. Mod. Phys. 84, 1307 (2012)



Accelerator studies

Historically — v energies up to 400 GeV at Fermilab
¢ 5-10% precision possible
Current focus — lower energy v are better for oscillations
studies -> current maximum available E, ~ 50 GeV
Few new measurements of v cross-sections
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Steel Shield

Scintillator Veto Wall

MINERVA

MINERVA is a Fermilab
experiment to study v
interactions on a variety of
nuclear targets

Useful for tuning models
(GENIE)
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Nuclear Targets in MINERVA
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Future accelerator prospects

DUNE — argon targets; well covered elsewhere in workshop

FASERv at CERN
& Forward neutrinos from the LHC

480 m downstream from ATLAS

W-emulsion in front of FASER spectrometer (u charge, energy...)
+ v cross-sections for all three flavors up to E ~ 5 TeV

ators

*—— ocintill

FASERYv Technical Proposal, arXiv:2001.03073 7



FASERYv cross-section projections

v cross-sections for all three flavors up to E ~ 5 TeV
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IlceCube intermediate energy measurement

Neyts ~0 ™ flux * volume * time
+ Relies on knowing atmospheric flux

¢ Tied to accelerator measurements to constrain flux
Predicted uncertainties ~ 10%

9 years of v, data
Energy range 100 GeV to 5 TeV

& A very wide energy range (a feature of most vTelescope studies)
¢ v/vbar ratio affects measured cross-section
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Earth absorption measurements — where to look

Earth absorption increases with increasing E,, & with increasing
path length

& Density increases with depth -> more absorption for small B,

¢ At 15 TeV, a chord with ®,= 180 degrees is 1 absorption length
The most sensitive angle (for ) decreases with increasing E,

¢ At 10-100 TeV, absorption is mostly visible for ®,> 135 degrees

o At 1018+ gV, neutrinos are only visible near the horizon
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SK, Sally Robertson and Ramona Vogt, Phys. Rev. C102 015808 (2020) 10



IceCube v, absorption measurement

1 year of IC79 data, 10,784 up-going events with E, > 1 TeV

Mixture of atmospheric and astrophysical v
PREM model for earth density as function (radius)
Assume o is a multiple R of the standard model
¢ R is same for CC and NC
Calculate transmission probability as a function of R, E, and 6,

¢ NC events cause v energy loss-> some spectral dependence
& Same for t regeneration, but it is not important here

| Vertical

Neutrino Energy [GeV]

lceCube, Nature 551, 596 (2017) 1



Cross-section measurement

Fit Noyis(E,, ©,) to find best R*flux (R* flux to reduce flux sens.)
Nuisance params for atmospheric & astrophysical v uncertainties
& Astrophysical flux and spectral index

¢ Atmospheric flux, spectral index, K/= ratio, v/vbar

& Astrophysical v assumed isotropic with ®(v) = ®(vbar)

Energy range determined by studying change in significance by
setting absorption =0 at lower/higher energies

+ Other methods would give different ranges

0.9

-=-Neutrino

-+ Antineutrino
—Weighted combination

—This result

1 Accelerator |
Data

lceCube, Nature 551, 596 (2017)
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Future IceCube v, measurement

8 years of data; selection from astrophysical v, study
+ 300,000 events (30*previous study)

Three energy bins:1-10 TeV, 10 TeV-1 PeV, and > 1 PeV
Transmission probability fit with splines

Improved systematic errors — better model of optical properties of
ice etc.

Asimov likelihood for
3 energy ranges

Sally Robertson, arXiv:2108.04965 13



Energy Dependent Cross-sections

Independent analysis of 6 years (58 events) of Icecube HESE
(starting events) cascades (showers)
¢ Small number of events limits precision
¢ Cascades = v, CC + all-flavor NC
NC showers contain only part of E,
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lceCube cross-section with starting events

7.5 year “HESE” (high energy starting event) sample
¢ 60 events with deposited energy > 60 TeV

Fit approach is broadly similar to the v, track study

+ Better energy resolution, worse zenith angle resolution, and
fewer events -> larger uncertainties

¢ Ternary Particle ID (shower/track/double-shower
Provided both Bayes and frequentist results

10—32 .

Parameter Energy range 68.3% HPD 68.3% CI
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lceCube measurement energy ranges

Low energy limit: Earth absorption > measurement uncertainty
High energy limit: enough flux for a measurement

Not much flavor/sample dependence
+ Some dependence on the method used to find the sensitive range

Publication Sample Livetime Energy range NBins Flavor PID
Ref. [71] Upgoing tracks lyr 6.3TeV to 980 TeV 1 L
Ref. [84] HESE cascades 6yr 18 TeV to 2 PeV 4 e
Ref. [85] HESE ternary 7.5yr 60 TeV to 10 PeV 4 e, W, T

Table 1: Comparison of the three cross section measurements performed with IceCube
data. All analyses fixed 0“©/oNC and o, /0, ratios based on the Standard Model
predictions. In addition, yN© = 0.25 was assumed in Ref. [84].

Flux drops rapidly with increasing energy (depending on spectral
index); increases in maximum sensitive energy will be fairly modest
(until the Gen2/radio era).

Teppei Katori, Juan Pablo Yanez & Tianlu Yuan, arXiv:2109.04430 16



Radiodetection

In the next ~ decade, radio-detection experiments could see
neutrinos with energies > 10" eV
¢ |f UHE cosmic rays are mostly protons, from the GZK process
p + y(cosmic microwave background radiation)-> A* -> nrt*
Heavier ions produce fewer v
Cross section sensitivity is from v just below the horizon
¢ Good angular resolution is required
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What are we measuring?

Current TeV+ measurements give the per-nucleon cross-section
for DIS on assumed isoscalar targets.
¢ H,O is not isoscalar
Nuclear shadowing reduces the cross-section for heavy targets
& 2-4% reduction - small effect
Diffractive interactions contribute to o for E> 100 TeV
The Glashow resonance for few PeV <E, <10 PeV
+ DIS very difficult in this region, unless v/vbar ratio well known
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SK, Sally Robertson and Ramona Vogt, Phys. Rev. C 102 015808 (2020); Zhou and

18
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Diffractive interactions

Diffractive interactions (DI) occur via v -> virtual WZI* pair

fluctuations, which interact with the Coulomb field of a nucleus,
becoming real

In coherent interactions ¢ ~ Z2, breaking the per-nucleon paradigm
¢ Complicates Earth absorption studies

DI have different inelasticity distributions than DIS
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Additional discrimination - inelasticity

Inelasticity probes different types of interactions, including v,
Y = Ehadronic shower' Ev

v, interactions + v ->uvv have higher <inelasticity> then v,
lceCube measured inelasticity in 2,650 starting track events
Complementary probe to cross-section
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What about v_?

o(v.) is difficult to measure at low energies, due to the low flux
and small cross-section for identifiable CC events.

Most atmospheric v. are from oscillation from other flavors;
determining the flux depends on oscillation parameters

¢ FASERVv has a short baseline & should see enough v_ for a
measurement.

For astrophysical v, oscillation is assumed to be complete,
and the v_flux is as well known as the other flavors.

|dentifying v_ events is hard. With a big enough detector, at
PeV+ energies, double-bang events could be used. At
energies >10'7 eV, the t lives long enough that this is difficult.
Measurement of hadronic shower + lepton dE/dx (ala IceCube
inelasticity study) may be a useful signature.

Earth-skimming experiments observe a fairly narrow range of
zenith angles. Is this enough to both normalize the flux and
determine the cross-section? 21



Conclusions

Accelerator experiments have measured the neutrino cross-
section at energies up to 400 GeV

¢ The standard model looks good, at the few percent level.

In the next few years, FASERv at the LHC will extend accelerator
measurements up to several TeV.

Higher energies are probed by observing v absorption in the Earth.

& Current experiments cover the TeV to PeV range. Near-future data
will improve the precision in this energy range, while longer-term
radio-detection experiments could reach the EeV range.

These experiments will probe low-x, high Q? structure functions, and
are sensitive to BSM physics.

& Absorption studies are subject to significant systematic uncertainties,
including due to limited knowledge of the v beam.

This is not a problem for BSM studies, where orders-of-magnitude
increase in the cross-section are expected, or for searches for large

saturation effects. It will limit precision parton measurements. ,
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